

Design of Facet Joint Resurfacing Bearings for Tribological Testing Purposes

Beril S Yenigul*, Andrew R Beadling, Michael G Bryant and, Richard M Hall School of Mechanical Engineering, Institute of Functional Surfaces, University of Leeds, Leeds, LS2 9JT, **United Kingdom**

* Corresponding author Email Address: mnbsy@leeds.ac.uk

Up to 65% of individuals experience neck pain in their lifetime [1].

The facet joints play a pivotal role in back and neck pain, a condition that has been a leading cause of global disability since 1990 [2].

The global spinal implants & devices market size was valued at USD 12.4 billion in 2021 [3].

The main functions of the facet joints (FJs) when healthy:

- to provide support
- to sustain stability in the spine
- to limit end-range motion

- osteoarthritis
- spinal stenosis
- degenerative spondylolisthesis
- trauma

Outcome:

- Leg/back/neck pain
- Spinal instability
- Neurologic injury
- Further degeneration of the facet joint

Gaps in the Literature:

- A facet resurfacing system design focusing on the cervical spine (neck)
- A standard guide describing a wear testing method for cervical facet joint replacement system
- Tribological testing rig design to assess tribological characteristics of the resurfacing bearings.

Aim: to design, manufacture and test (tribologically) a motion and tissue sparing facet joint device.

Facet joint resurfacing devices focusing on lumbar spine

Design of a Facet Joint Resurfacing Bearings and its Tribological Testing Rig:

Spigot Design to Attach Samples to the Simulator

Design of CoCr and UHMWPE Friction Testing Samples

Conclusion:

- 1.A novel facet joint replacement design tailored for the C5-6 level for tribological testing purposes was produced.
- 2. The advantages of such motion preserving device design:
- Maintains option for Total Facet Joint Replacement and fusion surgery,
- A minimally invasive facet restoration implant.
- 3. The hip simulator was reconfigured to be used as an FJ simulator.
- 4. A novel validation rig was designed and manufactured.

Limitations:

- Implant dislocation may occur that requires reoperation
- Lack of clinical data (biomechanics)
- The sensitivity of the hip simulator's load cell

Data Analysis

Future Work:

- wear and friction relationship will be explored CoCr/UHMWPE facet joint resurfacing system under static and dynamic loading conditions.
- 2. The effect of wear-resistant coatings on reducing friction and wear in orthopaedic implants will be investigated.
- 3. Particle size distribution analysis will be done for the generated wear debris

Pre-Experiment Surface Images of a) CoCr b) UHMWPE samples

99 References:

- 1. Côté, P., J.D. Cassidy, and L. Carroll, The Saskatchewan Health and Back Pain Survey. The prevalence of neck pain and related disability in Saskatchewan adults. Spine (Phila Pa 1976), 1998. 23(15): p. 1689-98.
- 2.O'Leary, S.A., et al., Facet Joints of the Spine: Structure-Function Relationships, Problems and Treatments, and the Potential for Regeneration. Annu Rev Biomed Eng, 2018. 20: p. 145-170.
- 3. Spinal Implants & Devices Market Size, Share & Trends Analysis Report By Product (Fusion Devices, Spinal Biologics), By Technology, By Surgery Type, By Procedure Type, And Segment Forecasts, 2018 - 2024.)

SCAN ME

Be Curious 2021

