Interesting paper that investigates corrosion and tribocorrosion behavior of binary and ternary carbide coatings for load-bearing implants

An exciting paper discussing the feasibility of binary and ternary carbide coatings for load-bearing implants with improved biocompatibility was published by Pana and co-workers in 2020. The peer-reviewed article was published in the Coatings journal and it is titled “In vitro corrosion and tribocorrosion performance of biocompatible carbide coatings”.

This work assessed elemental and phase composition, tribo-mechanical properties, corrosion and tribocorrosion of coatings deposited by cathodic arc evaporation on polished 316L SS discs (Ra = 50 ± 2 nm). TiNbC coating outperformed the other synthesized coatings in terms of initial surface roughness and corrosion resistance (shown by the lowest change in Ra before and after corrosion tests). Even though ZrC and TiNbC displayed similar polished wear tracks, the latter exhibited the lowest friction coefficient and wear rate on the tribocorrosion tests.

These results delivery an important advancement towards the development of coatings more biocompatible, presenting higher corrosion resistance along with improved tribocorrosion performance. The graphical abstract shown below showcases some of the results of this worth reading paper.

 

CC License – 4.0 International (CC BY 4.0) Pana, I.; Vladescu, A.; Constantin, L.R.; Sandu, I.G.; Dinu, M.; Cotrut, C.M. In Vitro Corrosion and Tribocorrosion Performance of Biocompatible Carbide Coatings. Coatings 2020, 10, 654. https://doi.org/10.3390/coatings10070654

 

This post was written by Pedro Luiz Lima dos Santos as part of an ongoing series of scientific communications written and curated by BioTrib’s Early Stage Researchers.

Pedro is researching the Functional Biotribology of the Surface Engineering of 3D Printed Components at the University of Leeds, UK.