The Seven Secrets of Highly Successful Doctoral Students

I have recently attended a workshop called “The Seven Secrets of Highly Successful Doctoral Students”, held by Mr. Hugh Kearns. I would like to share these seven secrets with the research students. These seven secrets are as follows:

1. Care and maintenance of your supervisor

We should keep in mind that our supervisors are always busy and have many priorities along with our project. As it is our research, we need to become the driver. We should ask our supervisors to arrange meetings on a regular basis, even if we have done nothing! This way, we can use their valuable and practical tips and move our project forward. After each meeting, an agenda shall be prepared to indicate the following issues:

  • What I have done since last time
  • Questions/ issues
  • Feedback
  • What I will do next week
  • When is the next meeting?

2. Write and show as you go

Although it seems time-consuming, it is required that the research students regularly write since writing is a creative process clarifying thinking as well as developing ideas. We usually like to write when we feel we are ready, but we may never feel ready; therefore, we should write early, preferably in the morning, on a regular basis. Furthermore, we should get feedback from our supervisors and peers as writing is not improved by itself.

3. Be realistic

4. Say no to distractions

Social media is the number one distraction for wasting our time and for not doing work.

5. It’s a job

Although we should work for a certain amount of time daily, we have holidays as well. Thus, if we specify at what times we should focus on our work and when we do not have to work, we will get more done.

6. Get help

7. You can do it

One of the primary things that can help us significantly is perseverance, and the role of hardworking in making better progress is much more critical than intelligence.

 

 

This article was written by Mahdieh Mosayebias part of an ongoing series of scientific communications written and curated by BioTrib’s Early Stage Researchers.

Mahdieh is researching the Design of Self Lubricating Prothesis at ETH Zurich, Switzerland.

Post assessment of Total Hip Replacement Patient: An integrated AE measurement Technique

For many years, joint replacement of damaged hips has been a standard treatment in orthopaedic surgery. There is currently no mechanism for early detection of implant failure following surgery. Early detection of total hip replacement (THR) failure could lead to more proactive surgical intervention and better patient outcomes. In this instance, the Acoustic Emission (AE) measuring approach may be a good fit as a diagnostic indication for joint health, implant failure modes, and gait analysis.

The previous study’s AE monitoring technique did not collect patient motion data, making it hard to make accurate comparisons between AE events and implant motions, or to determine whether specific AEs are caused by specific implant articulation angles, loads, or angular velocities. FitzPatrick et al. (2022) established a concurrent technique of AE monitoring to combine lower-limb motion and AE data to enable temporal interpretation of acoustic information for gait analysis to study this issue.

Three patients (two males and one female) between the ages of 50 and 70 were taken for a combined AE and gait analysis. They underwent a ceramic-on-ceramic implant bearing hip replacement. Four passive ultrasonic receivers set in a flexible array on the patient’s skin surface from the iliac crest to the upper femur were used to identify AEs. As the patient walked across the room in a straight line at a self-selected speed over a force plate, AE data were recorded. A motion analysis system with six infrared tracking cameras recorded the patient’s limb motions at the same time.

Their findings revealed that AEs are significantly linked to the stance phase of walking, when implant loads are high and the hip joint’s angular velocity is high. The key observation from the male patient was that all of the recorded squeaks happened between 30% and 50% of their individual gait cycle, which pertains to terminal stance, across all walking tests. Interestingly, the situation was significantly different for the female patient; total voltage magnitudes were lowered, and AEs of significant magnitude occurred consistently during the stance phase.

Based on current findings, the exact mechanism that causes implant squeaking is unknown. As a result, ongoing research aims to collect combined AE and gait data from more hip replacement patients in order to evaluate if the findings apply to a larger group of patients and to get greater insight into quantitative relationships between AE activity and hip joint dynamics.

Source: FitzPatrick, A. J., et al. “Synchronized acoustic emission and gait analysis of total hip replacement patients.” Biomedical Signal Processing and Control 74 (2022): 103488.

 

This article was written by MM Raihan as part of an ongoing series of scientific communications written and curated by BioTrib’s Early Stage Researchers.

Raihan is researching In-situ Measurement of Nano-scale Wear Utilising Advanced Sensors at University of Leeds, UK.

International Womens Day – BioTrib

For International Women’s Day 2022 the women in BioTrib have put together a series of 6 interviews and articles covering:

– Why engineering as a profession?
– Women of Impact: Empowered women, empower women. 
– What did you expect your experience of engineering to be like, and how does that compare to reality?
– What skill(s) in particular have helped you during your career?
– What advice would you give to your younger self about entering STEM?
– Do you think that the proportion of women in your field has changed over the course of your career?

Thanks for editing and contributions from Judith SchneiderCecilia PerssonEdona HylaIsobel ReesBeril Saadet YenigülAfrina Khan PiyaDr Lisa-Dionne MorrisFjolla SylajIsobel Pollock-Hulf OBE and Charlotte Merrell

Check it out below!

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 956004 🇪🇺

Ukraine: In the face of adversity the international science community brigades

Ever since Russian invasion of Ukraine we have seen a rise in researchers & scientists coming out in solidarity with Ukrainian students and researchers by sharing opportunities in their universities and labs for them.

One of the initial such opportunities posted on Linkedin by Prof. Yiannis Pontikes reached nearly 150,000 people and is still gaining traction. This led to other scientists posting similar opportunities for the Ukrainian students and researchers leading to the launch of global hashtag #ScienceForUkraine that has been trending on Twitter and Linkedin where scientists throughout the world are sharing opportunities for Ukrainian students to continue their research.

A further online spreadsheet (link: Labs supporting Ukrainian Students) by Andrew Kern @pastramimachine has been created to help Ukrainian scientists locate the professors and funding departments throughout the world at all career levels. There is an interactive website Science for Ukraine to serve the same purpose. These lists are continuously updated and any academic interested in coming forward to help Ukrainian students and researchers can put their details. The list contains more than 500 opportunities at the moment and it is growing quickly.

Alliance of Science Organisations in Germany (DFG) have in their press release announced support for students and researchers from Ukraine under wide-ranging assistance programs being announced or to be announced. Polish academy of Sciences have also launched a website to help Ukrainian students and researchers with funding as well as further support to find a supervisor in their area of research.

Many other EU countries have also launched similar initiatives to support Ukrainians.

We are stronger together, in the face of this adversity the global scientific community has showed that while there may be war, the only way forward for future of science is through support and collaboration at a global scale.

 

This article was written by Sallar Ali Qazi as part of an ongoing series of scientific communications written and curated by BioTrib’s Early Stage Researchers.

Sallar Ali Qazi is researching Mechanical and Tribo-Chemical Wear Modelling of Artificial Joint Prostheses at Imperial College London, UK

LGBT History month: Alan Turing History and a Call to action

Alan Turing was certainly one man ahead of his time. He was fascinated by mathematics and logic and laid the foundations for what would become modern computer science. He helped the United Kingdom in the war efforts to break the Enigma, a dreaded cryptography machine used by Nazi Germany for communications. Later, he would also come up with concepts that just now are being explored such as artificial intelligence and mathematical biology (BBC Horizon).

Turing was homosexual, for this sole reason, he was arrested in 1952 for indecency. He was chemically castrated and had developed a depression that might have caused his suicide (Doan, 2017). Doan (2017) reflects on his tragic fate as a classic example of how society’s prejudice robbed him of a dignified and fulfilling life.

We might have progressed in tolerance and respect of LGBTQ+ community in most countries; however, LGBTQ+ scientists are still more likely to suffer discrimination in the workplace. This culminates in a higher likelihood of depression, stress at work, insomnia, and other health issues (ELSE, 2021). Specially LGBTQ+ ethnical minorities and women are subject to the effects of prejudice (ELSE, 2021).

Let us not forget this tragic example and keep fighting to promote a more egalitarian culture in honor of Turing’s and so many lives wasted to intolerance.  As scientists, we can advocate for more inclusive and respectful workplaces and societies for everyone, regardless of gender expression and sexual orientation.

 

This article was written by André Plath as part of a series on LGBTQIA+ History Month. curated by BioTrib’s Early Stage Researchers.

André is one of BioTrib’s Early Stage Researcher‘s who is investigating Boundary Lubrication of Fibrous Scaffolds at ETH Zürich, Switzerland.

 

 

Header Image: “Alan Turing” by avaragado is licensed under Creative Commons. Image source: https://wordpress.org/openverse/image/a6514d5d-a295-4a60-8023-9a3e89f81c1b

References

Alan Turing BBC Horizon. Available at: <https://www.youtube.com/watch?v=Z-sTs2o0VuY>

Doan, L. (2017). Queer History / Queer Memory. In GLQ: A Journal of Lesbian and Gay Studies (Vol. 23, Issue 1, pp. 113–136). Duke University Press. https://doi.org/10.1215/10642684-3672321

Else, H. (2021). The largest-ever survey exposes career obstacles for LGBTQ scientists. In Nature. Springer Science and Business Media LLC. https://doi.org/10.1038/d41586-021-00221-w

 

 

Polymer Brushes and Lubrication: Nature Inspires New Biomaterial Advances

PRG4 or lubricin is a protein with a bottle-brush shape that can be perfectly mimicked by polymer brush grafting to biomaterial surfaces. This imparts to biomaterials’ surfaces super lubricous properties and a coefficient of friction (µ) lower than 0.01.  In addition, polymer brushes grafted to material surfaces may impart tunable hydrophilicity, self-cleaning, catalysis, controlled cell, and bacteria adhesion [1]. They can be applied for response actuation and drug delivery. Lubrication polymer brushes can be charged (positive and negative charges), amphiphilic, or act via steric hindrances[1]. The end properties can be controlled by molecular weight, grafting density, and radius of gyration.

One of the mechanisms of lubrication is brush hydration. The thick water film would prevent the probe from contacting the surface[1]. In nature, this role is played by hyaluronic acid and other sugar molecules in articular cartilage, for example. The sugar molecules are conjugated to lubricin forming a mucinous domain. The protein is anchored by a somatomedin-B (SMB) domain to hyaluronic acid from the extracellular matrix of cartilage cells (chondrocytes) [2,3]. The glycosylated domains can trap water and establish electrostatic repulsion promoting lubricity of the tissue [4,5]

Figure 1: Lubricin domains

Several strategies have been developed to mimic this biochemical environment. Poly(l-lysine) (PLL) brushes were grafted onto poly(ethylene glycol) (PEG) surfaces to obtain good lubricity and biocompatibility[6]. Morgese et al. grafted to poly(glutamic acid) different polyoxazolines. These polymers are known for passivating surfaces and promoting now-fouling without eliciting immune responses. In samples with hydroxybutyrate (HBA), she obtained a biomimetic material that could bind to degraded cartilage and regenerate tissue[7]. This implies interesting solutions for people with early-onset arthritis.

To conclude, bottle-brush materials might be the future of cartilage tissue engineering, but more studies need to be conducted to show the in vivo feasibility of the concepts. We expect these new materials to influence scaffolds/gels potentially entering the market in the next decades.

REFERENCES

[1]          S. Ma, X. Zhang, B. Yu, F. Zhou, Brushing up functional materials, NPG Asia Mater. 11 (2019) 24. https://doi.org/10.1038/s41427-019-0121-2.

[2]          Y. Lee, J. Choi, N.S. Hwang, Regulation of lubricin for functional cartilage tissue regeneration: a review, Biomater Res. 22 (2018) 9. https://doi.org/10.1186/s40824-018-0118-x.

[3]          I. Bayer, Advances in Tribology of Lubricin and Lubricin-Like Synthetic Polymer Nanostructures, Lubricants. 6 (2018) 30. https://doi.org/10.3390/lubricants6020030.

[4]          S.M.T. Chan, C.P. Neu, G. DuRaine, K. Komvopoulos, A.H. Reddi, Atomic force microscope investigation of the boundary-lubricant layer in articular cartilage, Osteoarthritis and Cartilage. 18 (2010) 956–963. https://doi.org/10.1016/j.joca.2010.03.012.

[5]          I.M. Schwarz, B.A. Hills, Surface-active phospholipid as the lubricating component of lubricin, Rheumatology. 37 (1998) 21–26. https://doi.org/10.1093/rheumatology/37.1.21.

[6]          S. Lee, M. Müller, M. Ratoi-Salagean, J. Vörös, S. Pasche, S.M. De Paul, H.A. Spikes, M. Textor, N.D. Spencer, Boundary Lubrication of Oxide Surfaces by Poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) in Aqueous Media, Tribology Letters. 15 (2003) 231–239. https://doi.org/10.1023/A:1024861119372.

[7]          G. Morgese, E. Cavalli, J.-G. Rosenboom, M. Zenobi-Wong, E.M. Benetti, Cyclic Polymer Grafts That Lubricate and Protect Damaged Cartilage, Angew. Chem. 130 (2018) 1637–1642. https://doi.org/10.1002/ange.201712534.

 

This article was written by André Plath as part of an ongoing series of scientific communications written and curated by BioTrib’s Early Stage Researchers.

André is researching Boundary Lubrication of Fibrous Scaffolds at ETH Zürich, Switzerland.

LGBTQ+ Researcher Visbility: 500 queer scientists

500 queer scientists (Actually 1,625+ queer scientists) is a visibility campaign for LGBTQ+ and allied people working in STEM and STEM supporting roles. It is a database of self-submitted biographies and stories intended to boost recognition and awareness of STEM scientists. This is with the view of helping isolated members of the queer community realise they are not alone and perhaps even create opportunities and connect communities in academic or professional institutions!

Visibility for LGBTQ+ STEM workers is critical for cultivating wellbeing in professional and academic environments. Many members of the LGBTQ+ community have reported incidents of harassment and discrimination in STEM environments,

It is estimated LGBT people are approximately 20% less represented in STEM fields than expected [Cech, 2017]. With nearly 28% of LGBT and 50% of trans staff at least once considering leaving the workplace due to a climate of discrimination [RSC, IOP 2019].

Further statistics and information is available on the 500 QS resource page.

If you are an LGBTQ+ person or ally in the STEM community, you can help grow 500 QS by submitting your own biography!

 

References

RSC, IOP 2019: https://www.rsc.org/globalassets/04-campaigning-outreach/campaigning/lgbt-report/lgbt-report_web.pdf

Cech, 2017: https://doi.org/10.3390/socsci6010012 

 

This article was written by Rob Elkington, the BioTrib website manager as part of a series of blog posts for LGBTQ+ history month.

 

BioTrib Silk Road – Embrace our opportunity of international research collaboration

Reaching back over 2,000 years, an ancient network of trade routes called the ‘Silk Road’ connected the East and the West. Precious goods, splendid cultures and religions travelling along thousands of miles, stroke, exchanged and merged. The term ‘Silk Road’ was first used by German geographer Ferdinand von Richthofen in 1877, as silk is one of the favourite goods traded from China to Europe, also as a metaphor for the ideas travelled from different civilizations.2

Amazed by this picture (marks are the origins of all ESRs who joined BioTrib this year) and the idea of ‘BioTrib Silk Road’ presented by Prof Richard during our ESRs meeting, I started to think about the importance of international research collaboration in the modern world.

BioTrib Silk Road – Image by Prof Richard M Hall, recreated by Esperanza Shi

 

“Ideas transcend borders, no country controls the marketplace of ideas.”

— Alejandro Adem 3

Indeed, there isn’t a researcher who knows everything in the world, nor a university owns all of the state-of-the-art equipment and facilities. We have to collaborate, and we love to collaborate. When people from diverse backgrounds meet, idea sparks. When institutions collaborate, science thrives. While in BioTrib, deep international connections have formed between universities and industries from the UK, Sweden, Switzerland, Germany, China and Australia; researchers are not only from different academic backgrounds but also diverse cultural backgrounds. The diversity and inclusiveness are the treasures of BioTrib and I can’t wait to see our footprints of contribution to academic research on this ‘BioTrib Silk Road’.

Header Image: Marco Polo Geography and Map Division/Library of Congress, Washington, D.C. (gct00215-ca000005) 1

 

References

(1) Marco Polo on the Silk Road https://www.britannica.com/topic/Silk-Road-trade-route

(2) The Silk Road https://www.nationalgeographic.org/encyclopedia/silk-road/

(3) The benefits and challenges of international research collaboration https://www.universityaffairs.ca/features/feature-article/the-benefits-and-challenges-of-international-research-collaboration/

 

This post was written by Esperanza Shi as part of an ongoing series of scientific communications written and curated by BioTrib’s Early Stage Researchers.

Esperanza is researching the Optimisation of Scanning Strategies for 3D Printed Artificial Joints at Imperial College London, UK.

 

Advances in Additive Manufacturing: 3D-printed microneedles

The ongoing 4th Industrial Revolution has shifted the traditional paradigm of producing medical devices. Additive Manufacturing (AM), a mould-less technology commonly referred to as 3D printing, plays an essential role in the shift taking place in this field.

Because of the high degree of geometrical freedom that can be achieved, AM is being used to conceive polymeric microneedles (MNs) with tailored design. For instance, Caudill and co-workers (2021) studied the benefits of microneedle vaccination over the traditional subcutaneous one. An AM process that relies on resin photopolymerization (i.e., continuous liquid interface production) was used to fabricate the MNs in two different shapes: square pyramidal and faceted (cf. image given in this post).

Cargo loading was performed via surface coating and assessed for the different MN designs. Whilst surface area increased 21.3%, cargo loading augmented 36% from square pyramidal to faceted with horizontal grooves, which pinpoints the importance of geometry design to loading biologics on MNs. Furthermore, transdermal delivery through MN vaccination was more effective in triggering primary antigen-specific IgG as well response duration when compared to subcutaneously or intradermally delivering paths.

Caudill et al. (2021) findings represent a major step towards a simpler, effective, and pain-free vaccination process that can potentially increase global vaccination. Furthermore, this self-administered vaccination path may aid in prompt responses during epidemic and pandemic scenarios. In that sense, AM has proved to be a feasible manufacturing route for improving drug delivery systems via tailored shapes and geometries.

Read more of this fascinating paper here: Transdermal vaccination via 3D-printed microneedles induces potent humoral and cellular immunity

This post was written by Pedro Luiz Lima dos Santos as part of an ongoing series of scientific communications written and curated by BioTrib’s Early Stage Researchers.

Pedro is researching the Functional Biotribology of the Surface Engineering of 3D Printed Components at the University of Leeds, UK.

BioTrib collaborators; University of Leeds and Imperial College, together with ETH Zurich and Uppsala University as project partners are awarded a programme grant for the treatment for spinal metastases

A £7 million research project has been launched to develop a new imaging and keyhole surgery approach to the treatment for secondary bone tumours of the spine. 

Known as metastatic bone disease, the tumours spread from a primary cancer located elsewhere in the body. The condition is particularly associated with breast cancer.  

The bone tumours cause vertebrae to weaken and eventually fracture, leaving people in severe pain, immobility and requiring surgery. In some cases, the fracture may damage the spinal cord and cause paralysis. For these patients, however, quality of life is a key issue and complex surgery may be inappropriate. 

A research collaboration between the University of Leeds, Imperial College London and UCL has received funding to develop an alternative approach based on developing new imaging and modelling techniques that will enable clinicians to predict which patients are at a high-risk of a vertebra fracturing.  

They would then be fitted – using minimally invasive surgery – with a tailor-made implant to strengthen the spine and prevent the fracture. 

The project – Oncological Engineering: A new concept in the treatment of bone metastases – has attracted £7 million in research funding, including £5.6 million grant from the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research and Innovation, the Government-funded body set up to support research and innovation. 

“The problem facing doctors is they have no way of knowing which of the spinal vertebrae is going to collapse. But when that happens, patients may require major surgery which involves a lengthy period of rehabilitation. 

Our approach is to intervene by developing new techniques and equipment that will prevent spinal fractures, crucially helping to maintain a patient’s quality of life at a time when they may be terminally ill. ”

Professor Richard Hall

BioTrib Coordinator and expert in medical engineering at the University of Leeds who is leading the new research collaboration

According to Cancer Research UK, 150 people every day are diagnosed with breast cancer. Although more than 76% of people with the disease survive for more than ten years, some patients do develop stage 4 cancers, of which it is estimated about 50% to 60% get bone tumours.  

In stage 4 cancers, the disease has spread to other organs. 

Within five years, the research team hope to have developed new techniques and materials that will revolutionise the treatment of bone metastases.  

The approach is based on personalised medicine, assessing an individual’s risk that the spine has weakened so much that a vertebra will fracture. In those cases where surgeons intervene to strengthen the spine, the implant will be tailor-made.  

“Through improvements in imaging and modelling and a personalised approach, this project has the potential to revolutionise the treatment of secondary bone tumours. 

It demonstrates the importance of fundamental research and engineering solutions in developing new treatments that will have a profound impact on peoples’ lives.” 

Dr Kedar Pandya

Director for Cross-Council Programmes at the Engineering and Physical Sciences Research Council

Predicting the risk of a vertebrae fracturing 

Researchers will develop news approaches to patient imaging and computer modelling, enabling them to track tumour development in the spine over time and how it might be weakening individual vertebrae. The information would be compared with the loading on the spine, enabling clinicians to predict which of the vertebrae is at risk of fracturing. 

“This funding will enable us to significantly expand our work combining computational modelling with cutting-edge imaging to better understand how cancers grow and interact with surrounding tissues.  

We are excited to use these multidisciplinary frameworks to understand vertebra fracture risk and ultimately help to improve quality of life for cancer patients.” 

Professor Rebecca Shipley

Department of Mechanical Engineering at UCL and one of the co-investigators

Implant made of advanced materials 

Those vertebra at a high-risk of collapse would be supported by an implant inserted into the spine using minimally invasive techniques.  

The implant would be made from what is called a metamaterial, a material that has uncommon properties that can be fine-tuned to the needs of the patient, for example the material could harden when under stress. 

Metamaterials are currently used in the aerospace industry but with advances in 3-D computer printing, the research team believe they could be adapted to provide tailor-made structural integrity to vertebrae at high risk of fracturing. 

The advanced manufacturing group from the Dyson School of Design Engineering at Imperial College, London, will be developing a novel 3D printer capable of fabricating the intricate implant designs. Their machine will utilise smart optical systems to print photopolymers at extremely fine resolution. 

“This project allows us to expand our expertise in the analysis, optimisation and 3D printing of structural metamaterials. By working as part of the multidisciplinary team we aim to apply the new approaches and knowledge to improve the quality of life of late-stage cancer suffers.  

We will also be able to apply some of these new approaches back into the aerospace and mechanical engineering sectors where advanced meta-materials have a wide range of potential applications.”

Dr Rob Hewson

BioTrib Lead Scientist and Co-investigator of new research collaboration at Imperial College

By using minimally-invasive techniques to implant the material, the recovery period for patients will be days – rather than weeks or months with the surgery that is required if one of the spinal bones fractures. 

The NHS long-term plan for cancer treatment had called on researchers to develop new interventions that would improve the quality of life of patients living with advanced cancers. 

It is hoped the new techniques will be applied to other areas of the healthcare sector.  

Adapting Offices for the Future of Work

The pandemic has driven changes in the way we work, in particular how office space is now utilised by employees. In order to address new needs borne through the pandemic and to accommodate hybrid working along with neurodiversity in shared offices, Leeds Business School are actively researching how these spaces are adapting for the future of work.

Check out this interesting summary on the Adapting Offices for the Future of Work research project, funded by the ESRC: Economic and Social Research Council.

500 LinkedIn Follower Milestone!

A year on since the start of BioTrib we have now completed recruitment of all 15 Early Stage Reseachers and achieved a milestone 500 followers on LinkedIn!

Thanks to everyone in the BioTrib community!

Building a career during a pandemic

Many BioTrib Early Stage Researchers have had the added challenge of beginning their PhD during the Covid pandemic requiring them to rapidly adapt to new paradigms of remote and hybrid working. 

Hannah Preston, Dr Helen Hughes and Dr Matthew Davis at Leeds University Business School have created a range of resources based on Helen’s research giving an overview of new working trends along with advice on what organisations and researchers can do to maximise their wellbeing and working practices.

They have even created a podcast avaliable here!

Check out the full report and more of this timely and cutting edge research on the Understanding the value of internships project page!

Formnext global exhibition

Additive manufacturing also known as 3D printing has rapidly evolved since the 80’s and is now a major fabrication methodology for rapid prototyping of custom-made object [1]. Its benefits are applied in many fields such as medical, academic, aerospace, robotics and industrial machinery. 3D printing encompasses different technologies like stereolithography (SLA), fused deposition modeling (FDM) or selective laser melting (SLM) using metal powder. Those printers exhibiting different workflows and using different materials allow to access wide range of possibilities for the characteristics (structural complexity, color, resolution, etc) and properties of the final constructs [2] [3].

Formnext convention in Frankfurt, November 2021

3D printing is making great strides every year and the business market is growing with them so as to respond to customers demand and to access a wider range of applications. In order to promote these new 3D printing related innovations, Formnext is taking place every November in Frankfurt since 2015. Formnext is a global exhibition on additive manufacturing and industrial 3D printing gathering hundreds of exhibitors and thousands of visitors. This event is an opportunity for the actors of 3D printing to exchange with companies and discover novelties in terms of printers, materials, post processing solutions and software.

Formnext also represents a human experience as this convention brings together people working in a wide range of fields, from experts to beginners in 3D printing. Formnext 2021 allowed the additive manufacturing community to meet again after 2020’s edition which took place online because of COVID-19.

Now let’s see how these innovations will be put to good use!

[1] Matias, Elizabeth & Rao, Bharat. (2015). 3D printing: On its historical evolution and the implications for business. 551-558. 10.1109/PICMET.2015.7273052.
[2] Deshmukh, Kalim & Houkan, Mohammad & AlMa’adeed, Mariam & Sadasivuni, Kishor kumar. (2020). Introduction to 3D and 4D printing technology: State of the art and recent trends. 10.1016/B978-0-12-816805-9.00001-6.
[3] Wohlers Associates Inc. (2013). Wohlers report. Fort Collins, CO: Wohlers.

 

This article was written by Marie Moulin as part of an ongoing series of scientific communications written and curated by BioTrib’s Early Stage Researchers.

Marie is researching the Bioprinting of Bone and Cartilage at Uppsala University, Sweden.

Five Lessons For A Successful Engineering Career

BioTrib is comprised of fifteen Early Stage Researchers all located in substantial engineering groups within five european universities in the global 1%. Each ESR is pursuing a PhD and developing significant expertise in the fields of Tribology, Biomechanics, Computational Fluid Dynamics, Polymer Science, Multifunctional Biomaterials and Materials Science. Following graduation from the BioTrib programme, our Early Stage Researchers will be equipped to be future engineering leaders within the medical technology community driving significant innovations in joint replacement technology.

To this end it is useful to consider what skills are required by effective engineering leaders. A recent article by John Butterfield at Hallam ICS reflects on five lessons learned throughout his own engineering career.

  1. Recognize you own strengths; respect those of others
    • None of us can be good at everything. We are at our best when we are engaged in work that fits our aptitudes, interests, education and experience.  Respect others for things that they know, and you don’t. Others can help you succeed.
  2. Understand your personal “value proposition”
    • What unique value do you offer through your personal combination of knowledge, skills, aptitude and experience? People will respect you and seek your advice for things that you “are good at”. Your contributions will also help others be successful.
  3. Never stop learning
    • Continuous learning and broadening your range of knowledge expands your mental “toolbox”. Our biggest limitation, is “not knowing what we don’t know”
  4. Communication is your link to the world
    • Your ability to speak, read, write and listen surpasses your technical knowledge and experience.
  5. Even in Engineering, it’s not just the technology, it’s really about the people
    • Cultivate the colleagues and contacts around you, they are your biggest asset and support network.

You can read the full article along with John’s own experiences throughout his engineering career here.